Daniel Watrous on Software Engineering

A Collection of Software Problems and Solutions

Software Engineering

What is Cloud Native?

I hear a lot of people talking about cloud native applications these days. This includes technologists and business managers. I have found that there really is a spectrum of meaning for the term cloud native and that two people rarely mean the same thing when they say cloud native.

At one end of the spectrum would be running a traditional workload on a virtual machine. In this scenario the virtual host may have been manually provisioned, manually configured, manually deployed, etc. It’s cloudiness comes from the fact that it’s a virtual machine running in the cloud.

I tend to think of cloud native at the other end and propose the following definition:

The ability to provision and configure infrastructure, stage and deploy an application and address the scale and health needs of the application in an automated and deterministic way without human interaction

The activities necessary to accomplish the above are:

  • Provision
  • Configure
  • Build and Test
  • Deploy
  • Scale and Heal


Provision and Configure

The following diagram illustrates some of the workflow involved in provisioning and configuring resources for a cloud native application.

You’ll notice that there are some abstractions listed, including HEAT for openstack, CloudFormation for AWS and even Terraform, which can provision against both openstack and AWS. You’ll also notice that I include a provision flow that produces an image rather than an actual running resource. This can be helpful when using IaaS directly, but becomes essential when using containers. The management of that image creation process should include a CI/CD pipeline and a versioned image registry (more about that another time).

Build, Test, Deploy

With provisioning defined it’s time to look at the application Build, Test and Deploy steps. These are depicted in the following figure:

The color of the “Prepare Infrastructure” activity should hint that in this process it represents the workflow shown above under Provision and Configure. For clarity, various steps have been grouped under the heading “Application Staging Process”. While these can occur independently (and unfortunately sometimes testing never happens), it’s helpful to think of those four steps as necessary to validate any potential release. It should be possible to fully automate the staging of an application.


The discovery step is often still done in a manual way using configuration files or even manual edits after deploy. Discovery could include making sure application components know how to reach a database or how a load balancer knows to which application servers it should direct traffic. In a cloud native application, this discovery should be fully automated. When using containers it will be essential and very fluid. Some mechanisms that accommodate discovery include system level tools like etcd and DNS based tools like consul.

Monitor and Heal or Scale

There are loads of monitoring tools available today. A cloud native application requires monitoring to be close to real time and needs to be able to act on monitoring outputs. This may involve creating new resources, destroying unhealthy resources and even shifting workloads around based on latency or other metrics.

Tools and Patterns

There are many tools to establish the workflows shown above. The provision step will almost always be provider specific and based on their API. Some tools, such as terraform, attempt to abstract this away from the provider with mixed results. The configure step might include Ansible or a similar tool. The build, test and deploy process will likely use a tool like Jenkins to accomplish automation. In some cases the above process may include multiple providers, all integrated by your application.

Regardless of the tools you choose, the most important characteristic of a cloud native application is that all of the activities listed are automated and deterministic.

Leave A Comment