Tag Archives: map reduce

Analyze Tomcat Logs using PIG (hadoop)

In a previous post I illustrated the use of Hadoop to analyze Apache Tomcat log files (catalina.out). Below I perform the same Tomcat log analysis using PIG. The motivation behind PIG is the ability us a descriptive language to analyze large sets of data rather than writing code to process it, using Java or Python […]

Read more

Hadoop Scripts in Python

I read that Hadoop supports scripts written in various languages other than Java, such as Python. Since I’m a fan of python, I wanted to prove this out. It was my good fortune to find an excellent post by Michael Noll that walked me through the entire process of scripting in Python for Hadoop. It’s […]

Read more

Use Hadoop to Analyze Java Logs (Tomcat catalina.out)

One of the Java applications I develop deploys in Tomcat and is load-balanced across a couple dozen servers. Each server can produce gigabytes of log output daily due to the high volume. This post demonstrates simple use of hadoop to quickly extract useful and relevant information from catalina.out files using Map Reduce. I followed Hadoop: […]

Read more

MongoDB Aggregation for Analytics

I’ve been working on generating analytics based on a collection containing statistical data. My previous attempt involved using Map Reduce in MongoDB. Recall that the data in the statistics collection has this form. { "_id" : ObjectId("5e6877a516832a9c8fe89ca9"), "apikey" : "7e78ed1525b7568c2316576f2b265f55e6848b5830db4e6586283", "request_date" : ISODate("2013-04-05T06:00:24.006Z"), "request_method" : "POST", "document" : { "domain" : "", "validationMethod" : "LICENSE_EXISTS_NOT_EXPIRED", […]

Read more

MongoDB Map Reduce for Analytics

I have a RESTful SaaS service I created which uses MongoDB. Each REST call creates a new record in a statistics collection. In order to implement quotas and provide user analytics, I need to process the statistics collection periodically and generate meaningful analytics specific to each user. This is just the type of problem map […]

Read more